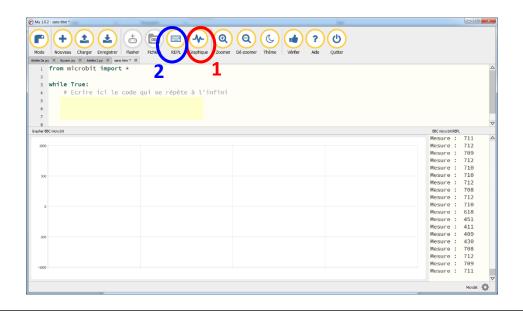

Exemple 3 : Utiliser un capteur de lumière - Partie 1.

Objectifs: Trouver le seuil à partir duquel la photorésistance ne capte plus de lumière.

<u>Document 1 :</u> Schéma du montage.

Connecter la photorésistance en série avec une résistance de 10 k Ω . Placer l'ensemble sous la tension de 3V délivrée par la carte micro:bit (entre les bornes 3V et GND).

Brancher la borne 0 entre la photorésistance et la résistance de 10 k Ω (pour mesurer la tension aux bornes de la résistance – avec la photorésistance, elles forment un pont diviseur de tension).

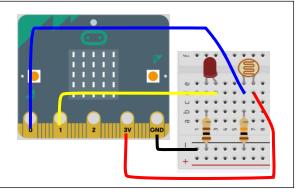


Document 2 : Fonctions utiles.

Fonction	<u>Rôle</u>
from microbit import *	Permet d'utiliser les fonctions de base liées à la carte microbit
while True:	Fait une boucle infinie
	Permet de lire la tension analogique sur une borne de la micro:bit.
pin 0 .read_analog()	① : Ecrire le numéro du port concerné
	La fonction renvoie une valeur numérique entière entre 0 et 1023 (sur
	10 bits) proportionnelle à la tension sur la borne.
	0 correspond à une tension de 0V
	1023 à une tension de 3 V
	pin1.read_analog() → Lit la valeur de la tension de la borne 1
print(0)	Permet d'envoyer sur la liaison série USB une chaîne de caractères
	et/ou des valeurs.
	① : Texte à envoyer
	print('valeur de a :',a) → Sia vaut 35, envoi le texte
	« valeur de a : 35 »
sleep(0)	Permet de programmer une temporisation.
	① : Ecrire la durée en milliseconde
	sleep (1000) correspondra à 1000 ms, soit 1 s d'attente.

<u>Document 3 :</u> Lire les mesures dans la console.

Après avoir téléversé, cliquer sur « Graphique » puis « REPL ».



Exemple 3 : Utiliser un capteur de lumière – Partie 2.

<u>Objectifs</u>: Allumer la DEL à la condition qu'il n'y ait plus de lumière captée par la photorésistance.

Document 1 : Schéma du montage.

On combine le montage de l'atelier 1 (avec la diode), mais branché sur la borne 1, et le montage de l'atelier 3b partie 1 avec la photorésistance.

Document 2 : Fonctions utiles.

Fonction	Rôle
from microbit import *	Permet d'utiliser les fonctions de base liées à la carte microbit
while True:	Fait une boucle infinie
nin nord analog()	Permet de lire la tension analogique sur une borne de la micro:bit.
pin $oldsymbol{\Phi}$.read_analog()	① : Ecrire le numéro du port concerné
	La fonction renvoie une valeur numérique entière entre 0 et 1023 (sur
	10 bits) proportionnelle à la tension sur la borne.
	0 correspond à une tension de 0V
	1023 à une tension de 3 V
	pin1.read_analog() → Lit la valeur de la tension de la borne 1
< ou > ou ==	Permet d'effectuer des comparaisons, de créer des conditions.
if 0 :	Permet de créer des instructions conditionnelles.
2	① : Ecrire la condition.
else :	② : Ecrire les instructions à effectuer si la condition est vraie.
3	③ : Ecrire les instructions à effectuer si la condition est fausse.
	if a > 5:
	b = a - 5
	même print(a)
	indentation sleep (100)
	else :
	b = a + 2
	Même print(a)
	indentation sleep (500)
sleep(0)	Permet de programmer une temporisation.
	① : Ecrire la durée en milliseconde
	sleep (1000) correspondra à 1000 ms, soit 1 s d'attente.